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bstract

Batch crystallization is one of the widely used processes for separation and purification in many chemical industries. Dynamic optimization
f such a process has recently shown the improvement of final product quality in term of a crystal size distribution (CSD) by determining an
ptimal operating policy. However, under the presence of unknown or uncertain model parameters, the desired product quality may not be achieved
hen the calculated optimal control profile is implemented. In this study, a batch-to-batch optimization strategy is proposed for the estimation of
ncertain kinetic parameters in the batch crystallization process, choosing the seeded batch crystallizer of potassium sulfate as a case study. The
nformation of the CSD obtained at the end of batch run is employed in such an optimization-based estimation. The updated kinetic parameters

re used to modify an optimal operating temperature policy of a crystallizer for a subsequent operation. This optimal temperature policy is then
mployed as new reference for a temperature controller which is based on a generic model control algorithm to control the crystallizer in a new
atch run.

2007 Elsevier B.V. All rights reserved.
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. Introduction

A crystallization process is one of the major processes for
roduct separation in fine chemical, food, mineral, petrochemi-
al, and pharmaceutical industries [1]. Considering the operation
f crystallizers, a batch process is preferable as a larger mean
rystal size and narrower crystal size distribution (CSD) can
e achieved. In general, the CSD which is typically character-
zed by the mean and variance of crystal size is a key property
o control this process because it directly affects final product
ualities. Therefore, finding an optimal operating condition and
ffective control strategy to obtain the crystals with a desired
SD is significant in order for improving the performance of
atch crystallization processes and at the same time reducing
ifficulties in downstream processing [2].

In the formation of a crystal, a driving potential is the

onequilibrium state of the system measured by a relative
upersaturation. For case of batch crystallizations, a solution
emperature profile affects the supersaturation profile which has

∗ Corresponding author. Tel.: +66 2 2186878; fax: +66 2 2186877.
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strong effect on the CSD via kinetic phenomena (i.e., growth
nd nucleation of crystals), and therefore is often employed to
ndirectly control this process [3,4]. In the past years, various
ooling strategies such as linear, natural, and controlled cooling
ave been widely investigated. Hojjati and Rohani [5], for exam-
le, investigated the effect of cooling rate policy on the level of
upersaturation for batch crystallization of ammonium sulfate
roduction. Four cooling strategies consisting of a natural, lin-
ar, controlled, and impulse change in natural cooling policy
ere investigated and the results showed that at low seed load-

ng, the controlled cooling policy is needed in order to ensure
arrow final CSD with large mean size.

Recently, an optimization of batch crystallization processes
as received considerable attention as it is a useful tool to design
n optimal operating temperature which has a direct effect on
he final-time CSD. Many previous studies have been focused on
he computation and solution of such an optimization problem.

iller and Rawlings [6] proposed an open-loop optimal con-
rol strategy on a bench-scale potassium nitrate–water system.

mplementation of the optimal cooling policy on this system
eads to an increase in the weight mean size of crystal product.
osta et al. [2] proposed the optimal cooling methodology to

mprove product quality in an adipic acid crystallization process.

mailto:Amornchai.A@chula.ac.th
dx.doi.org/10.1016/j.cej.2007.08.010
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Nomenclature

A total heat transfer surface area (m2)
b nucleation rate exponent
B nucleation rate (no. crystal s−1 g solvent−1)
C solution concentration (g solute g solvent−1)
Cm metastable concentration (g solute g solvent−1)
Cp heat capacity of the solution (kJ kg−1 K−1)
Cpj heat capacity of cooling water (kJ kg−1 K−1)
Cs saturation concentration (g solute g solvent−1)
E activation energy
f population density of crystals (no. of crys-

tals �m−1 g solvent−1)
Fj cooling water flow rate (m3 s−1)
g growth rate exponent
G growth rate (�m s−1)
�H heat of crystallization (kJ kg−1)
kb birth rate coefficient (s−1 �m−3)
kg growth rate coefficient (�m s−1)
kv volumetric shape factor
K1, K2 GMC tuning parameters
L characteristic crystal length (�m)
M mass of solvent in the crystallizer (kg)
R gas constant
t time (min)
T reactor temperature (K)
Tj cooling jacket temperature (K)
Tjsp set point of the jacket temperature (K)
U overall heat transfer coefficient (kJ m−2 h−1 K−1)
Vj jacket volume (m3)

Greek symbols
μ moment of the CSD
μ0 zeroth moment of the CSD (no. of crys-

tals g solvent−1)
μ1 first moment of the CSD (�m g solvent−1)
μ2 second moment of the CSD (�m2 g solvent−1)
μ3 third moment of the CSD (�m3 g solvent−1)
ρ density of crystals (g �m−3)
ρj density of cooling water (kg m−3)

Superscripts
n nucleation
s seeded crystal
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istic length, L and time, t.
u et al. [7] studied the optimization of batch-seeded crystalliz-
rs. The results show that the optimal cooling profile is able to
educe the volume of fine crystals. Most of these optimal temper-
ture profiles rely on the accuracy of a crystallization process
odel which can be described by either a population balance
odel (PBE) or a moment model (the reduced order model of the

BE) coupled with mass and energy balances. However, from the
iew point of modeling, the growth and nucleation kinetics are
he most important uncertain parameters. It was demonstrated

p
t
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hat even such kinetic parameters can be typically determined
y experiments, they are likely to have substantial errors [8].

Due to the presence of uncertain kinetic parameters, the
alculated optimal control profile may not give an optimal per-
ormance when applied to real processes. To overcome this
roblem, an estimation of kinetic parameters may be required.
ccording to Hu et al. [3], many research activities have been

ocused on the development of various methods such as polyno-
ial fitting and optimization procedure, for the kinetic parameter

stimation in batch crystallization processes. It has been known
hat all the state variables cannot be measured. This is espe-
ially for the CSD of which the on-line measurement is difficult
nd inaccurate. Thus, the developed techniques to estimate the
arameter of the model should be based on the available and
eliable measurements.

In this study, we propose a batch-to-batch optimization strat-
gy integrated with an on-line nonlinear control methodology
or controlling a crystallizer process, choosing the seeded batch
rystallization of potassium sulfate as a case study. As the batch
rocess is repetitive in nature, it would be possible to exploit
nformation of previous batch results to improve the operation of
new batch. Here, an off-line measurement of a crystal size dis-

ribution which is obtained with reliability and accuracy through
xperimental analysis at the end of run is used to update kinetic
arameters by solving a parameter optimization problem. These
pdated kinetic parameters are then used to modify the optimal
perating temperature policy for a subsequent operation. Since
he deviation from the desired optimal profile might cause an
ff-spec product, an on-line feedback control system should be
onsidered [7]. However, only a few studies have focused on
his topic; for example, Zhang and Rohani [9] applied a conven-
ional PI control to track the optimal cooling temperature of a
atch crystallizer. As it has been shown from the previous stud-
es [10,11] that a generic model control (GMC) as a nonlinear
odel-based control algorithm is more effective and robust in

racking the optimal temperature profile than conventional PID
ontrollers. Thus, in this study a generic model control (GMC) is
ntegrated to the batch-to-batch optimization approach to control
he crystallizer temperature following the desired profile.

. Mathematical model of a seeded batch crystallizer

The classical framework for modeling batch crystallization
rocesses consists of the population balance equation (PBE)
escribing a conservation equation for a number of crystals in
population. Based on the following basic assumptions; vol-

me change in the system is assumed to be negligible; crystal
gglomeration or breakage phenomena are neglected [12], the
BE can be mathematically expressed as

∂f (L, t)

∂t
+ G(t)

∂f (L, t)

∂L
= 0 (1)

here f(L, t) is the population density of crystals at a character-
As the nucleation and growth of crystals rely on the liquid
hase properties, the mass balance is used to explain the concen-
ration change of the solute and can be shown in the following
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Table 1
Model parameters of a seeded batch crystallizer

Parameters Value

b 1.45
kb (s �m3)−1 285.0
Eb/R (K) 7517.0
U (kJ (m2 h K)−1) 1800.0
�H (kJ kg−1) 44.5
M (kg) 27.0
kv 1.5
Vj (m3) 0.015
ρj (kg m−3) 1000.0
g 1.5
kg (×108 �m s−1) 1.44
Eg/R (K) 4859.0
A (m2) 0.25
Cp (kJ (kg K)−1) 3.8
ρc (×10−12 g �m−3) 2.66
t (min) 30.0
F
C

L

a

L

f

e
w

t
o
[

n
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quation:

dC

dt
= −3ρckvG(t)μ2(t) (2)

The energy balances for a batch crystallizer and jacket are as
ollows:

dT

dt
= −3

�Hc

Cp

ρckvG(t)μ2(t) − UA

MCp

(T (t) − Tj(t)) (3)

dTj

dt
= Fj

Vj

(Tjsp(t) − Tj(t)) + UA

ρjVjCpj

(T (t) − Tj(t)) (4)

The ith moment of the population density is defined in terms
f the population density function by

i =
∫ ∞

0
f (L, t)Li dL (5)

In the formation of a crystal, two steps are occurred: the birth
f a new particle and its growth to macroscopic size. The driving
otential for both rates is the nonequilibrium state of the system
easured by a relative supersaturation (S):

= C − Cs(T )

Cs(T )
(6)

The rates of crystal nucleation (B) and growth (G) can be
xpressed in Eqs. (7) and (8):

(t) = kb e−Eb/RT Sbμ3(t) (7)

(t) = kg e−Eg/RT Sg (8)

The control purpose of a crystallization process is to man-
ge the nucleation and growth rates to achieve the desired
rystal size. Well-controlled crystallization processes is usually
perated in the metastable zone bounded by the saturation con-
entration and the metastable limit, Cs ≤ C ≤ Cm, in order to
void uncontrolled nucleation of crystals.

In this work, the seeded batch crystallizer of potassium sulfate
tudied by Shi et al. [13] is considered. The value of the model
arameters are shown in Table 1. The following equations are
sed to calculate the saturation and metastable concentrations
orresponding to the solution temperature, T:

s(T ) = 6.29 × 10−2 + 2.46 × 10−3T − 7.14 × 10−6T 2

(9)

m(T ) = 7.76 × 10−2 + 2.46 × 10−3T − 8.10 × 10−6T 2

(10)

The PBE called “a population model” (Eq. (1)) is solved using
solution methodology proposed by Hu et al. [2,7]. Based on

he concept of the population balance that describes the state of
he CSD, the PBE is transformed by a finite difference method

o a set of algebraic equations. The population densities in the
bsence of crystal aggregation and breakage at time t1 and
2 = (t1 + �t) can be related by

(L1, t1)�L1 = f (L2, t1 + �t)�L2 (11)

f

d

f

j (m3 s−1) 0.001

pj (kJ (kg K)−1) 4.184

The definition of growth rate is defined when �t is small as

2 ≈ L1 + G(L1, t1)�t (12)

nd

2 + �L2 ≈ L1 + �L1 + G(L1 + �L1, t1)�t (13)

Subtracting Eq. (13) by Eq. (12) yields

�L2 ≈ �L1 + (G(L1 + �L1, t1) − G(L1, t1))�t

≈
(

1 + ∂G(L, t1)

∂L

∣∣∣∣
L=L1

�t

)
�L1 (14)

Substituting Eq. (14) into Eq. (11) gives

(L2, t1 + �t) ≈ f (L1, t1)

1 + (∂G(L, t1)/∂L)|L=L1�t
(15)

Therefore, the PBE are defined as algebraic equations for the
valuation of CSD with size L2 at time t2 in terms of the CSD
ith size L1 at time t1.
The initial distribution of the seeded crystals in the batch crys-

allizer is assumed to be a parabolic distribution as the function
f the crystal characteristic length ranging from 250 to 300 �m
13]:

f (L, 0) ={
0.0032(300 − L)(L − 250) for 250 �m ≤ L ≤ 300 �m

0 for L < 250 �m and L > 300 �m
(16)

In addition, the boundary condition is defined as the ratio of
ucleation and growth rate of crystals with L = 0:
(0, t) = B(t)

G(t)
(17)

It should be noted that although the population model can be
irectly solved, its implementation in an optimization problem is
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ery time-consuming. Recently, the development in the method
f moments leads to a reduced order model (called “the moment
odel”) in which the key dynamics of the crystallization process

re taken into account [12]. This method allows the model to be
olved quickly and efficiently. As a consequence, in this work the
opulation model represents the actual crystallization process
hereas the moment model is used in the formulation of an
ptimization problem and the design of a nonlinear model-based
ontrol.

Following the moment model approach, the population model
Eq. (1)) is transformed to a set of ordinary differential equations
ODEs). The rate equation of moments is derived by determining
eparately the moments of the seed and nuclei classes for the
SD as in Eqs. (18) and (19):

dμn
0

dt
= B(t),

dμn
i

dt
= iG(t)μn

i−1(t), i = 1, 2, 3 (18)

s
0 = constant,

dμs
i

dt
= iG(t)μs

i−1(t), i = 1, 2, 3 (19)

The overall ith moments are defined as μi = μn
i + μs

i . It is
oted that since the crystal breakage or agglomeration model
as not considered in the proposed crystallizer model, the total
umber of the crystals growing from seeds remains constant
hich is determined by the initial seed size distribution.

. Batch-to-batch optimization approach

As batch processes are repetitive in nature, it would be pos-
ible to use information from the previous batch to improve the
peration of a new batch. Here a batch-to-batch optimization
pproach is proposed to estimate kinetic parameters, i.e., kb and
g, which are important for the prediction of crystal formation.
he identification relies on the off-line measurement of a crystal
ize distribution (CSD) obtained at the end of batch run. Fig. 1
hows the schematic of an integrated batch-to-batch optimiza-
ion with GMC control proposed in this study. As can be seen
rom the figure, once the CSD of product at the end of opera-
ion is measured, the ith moment of the population density of the

rystals (μi,process) is calculated using Eq. (5) and compared with
hat predicted from a moment model (μi,model). It is noted here
hat the crystallization process is represented by the population

odel while the model of crystallizer, which is used within an

ig. 1. Control strategy integrated with batch-to-batch optimization for updated
inetic parameter.
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ptimization and control framework, is based on the moment
odel. New updated value of the constant kinetic parameters

kb and kg) is determined by solving a dynamic optimization
roblem with an objective to minimize such an error (Eq. (20)).
n this study, a sequential optimization method in which the
ynamic optimization is transformed into a nonlinear program-
ing problem is applied to find the new estimate of the kinetic

arameters. With the initial guess of the constant kinetic param-
ters, the crystallizer models consisting of the moment model of
rystallization (Eqs. (18)–(19)) and the mass and energy bal-
nces (Eqs. (2)–(4)) are integrated using the Matlab ode15 s
outine which is based on the backward differentiation for-
ulas (BDFs) and the objective function is then determined.
he nonlinear programming problem is solved by a sequential
uadratic programming (SQP) method using the fmincon rou-
ine in Matlab optimization toolbox in order to compute a new
alue of the parameters. The sequence continues until the opti-
al value of the objective function is found satisfying a specified

ccuracy:

min
b,kg

3∑
i=0

(μprocess
i (tf) − μmodel

i (tf))
2

(20)

ubject to

the moment model of crystallization (Eqs. (18)–(19));
the mass and energy balances (Eqs. (2)–(4));
kb, kg > 0

It should be noted here that the measured data of the final-
ime CSD from the last batch is only used to update the kinetic
arameters in the proposed method. In the sequence of batch
perations, each batch is operated under different optimal cool-
ng policy. Therefore, if all previous batch data are used to
dentify the parameters, a set of models, with different oper-
ting temperature profile, to describe each batch crystallizer
s required to predict the value of the ith moments which is
ompared with that obtained from each batch, resulting in a
omplicated parameter optimization problem.

.1. Formulation of a dynamic optimization problem

When the kinetic parameters in the moment model of the
eeded batch crystallizer are updated via the batch-to-batch opti-
ization strategy, they are employed for computing an optimal

perating temperature policy of the crystallizer for a new batch
un. In batch crystallization processes, the fine crystals usually
ffect both product quality and process economics. Moreover,
hey can also cause difficulties in downstream processing equip-

ent (i.e., filtration, drying). For this reason, the aim of a
ynamic optimization is to determine an optimal temperature

rofile minimizing the total volume of fine crystals represented
y the third moment of crystals, μn

3, whereas the total volume of
eeded crystals has to satisfy the product quality requirement.
he dynamic optimization problem can be stated mathematically
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s follows:

in
T (t)

μn
3(tf) (21)

ubject to

the crystallizer model equations: Eqs. (2), (18) and (19);
Cs ≤ C ≤ Cm, Tmin ≤ T ≤ Tmax,

μs
3(tf) ≥ 8.3301 × 109

here Tmin and Tmax is chosen as 303 and 323 K, respectively.
he final batch time, tf, is 30 min. The performance constraint
n the total volume of seeded crystals (μs

3) is included in the
ynamic optimization problem in order to guarantee that the
equirement of a final product quality is satisfied.

As in the parameter optimization problem, the sequential
ptimization approach is also employed to solve the formulated
ynamic optimization problem. Since the cooling temperature
s the function of operating time, the temperature profile as
n optimization variable is approximated by a piecewise con-
tant function. With the initial guess of temperature value in
ach interval, the crystallizer model equations (Eq. (2), (18) and
19)) are solved and then the objective function is evaluated. The
esulting nonlinear programming problem is solved to determine
new set of the temperature value in each time interval. This

rocedure is repeated until the optimal temperature profile is
ound.

. Generic model control algorithm

A generic model control (GMC), one of the nonlinear model-
ased control algorithms, is successfully applied to a number of
hemical processes [10,11]. This is because nonlinear process
odels can be interpreted straightaway in the GMC control algo-

ithm to generate optimal manipulated inputs, and the controller
arameters can be easily tuned [14].

The general form of GMC algorithm can be given as

dy

dt
= K1(ysp − y) + K2

∫ tf

0
(ysp − y) dt (22)

here y represents the controlled variables, K1 and K2 are the
MC tuning parameters determined by choosing a target profile
f the controlled variable [14].

To implement the GMC, an energy balance around the crys-
allizer as in Eq. (3) is needed. It provides the relation between a
ontrolled variable (crystallizer temperature) and a manipulated
ariable (jacket temperature). Replacing T for y in Eq. (22) and
earranging to obtain Tj as follows:

j = T + MCp

UA

(
K1(Tsp − T ) + K2

∫ t

0
(Tsp − T ) dt

+
(

�H

Cp

3ρkvG(t)μ2(t)

))
(23)
It is note here that the concentration and temperature are
ssumed to be measured and the second moment (μ2) can be
omputed from the moment model. The integral term in Eq.

h
q
t
c

ering Journal 139 (2008) 344–350

23) can be approximated by numerical integration. This leads
o the discrete-time form of the GMC algorithm as given in the
ollowing equation:

j(k) = T (k) + MCp

UA

(
K1(Tsp − T (k))

+K2

t∑
0

(Tsp−T (k))�t+
(

�H

Cp

3ρkvG(k)μ2(k)

))

(24)

here �t is the sampling time.
Since the jacket temperature determined from Eq. (24) is an

ctual temperature in the crystallizer which is not a set point or
nlet jacket temperature. In order to compensate the effect of a
ynamic of the jacket control system, a first order model with
ime constant, τj, is assumed. The jacket temperature set point
an be computed by

jsp(k) = Tj(k − 1) + τj

(
Tj(k) − Tj(k − 1)

�t

)
(25)

In this work, water is used as coolant, thus the jacket temper-
ture set point is bounded between 293 and 323 K.

. Simulation results

In the first case study, the effect of cooling modes, i.e., lin-
ar and optimal cooling policy, on the control performance of
seeded batch crystallizer in a nominal case where all parame-

ers are known exactly as given in Table 1, is illustrated. Under
he conventional linear cooling policy, the temperature set point
s cooled down linearly from 323 to 303 K. On the other hand,
nder the optimal cooling policy, the profile of the tempera-
ure set point is determined by solving a dynamic optimization
roblem as mentioned earlier. It is noted that a piecewise con-
tant function using 60 time interval with equal length is used to
pproximate the temperature profile. Once the profile of the tem-
erature set point is specified, a GMC controller is implemented
o drive the temperature of the crystallizer following the desired
et point. Based on the guideline given by [14] for setting the
MC tuning parameters, the values of K1 and K2 are chosen as
.013 and 10−10, respectively.

Figs. 2 and 3 show the crystallizer temperature and the
olution concentration profiles under the two cooling policies.
imulation result presents that the solution concentration can
e maintained within the metastable zone keeping away from
ncontrolled nucleation of crystals. Further, it can be seen from
ig. 3 that at the start of batch run, the optimal temperature set
oint of the crystallizer cannot be perfectly tracked since the
ower bound on the jacket temperature of 293 K is fixed; water
s selected as coolant in this case. With the use of other coolants
f which the lower limit of the temperature can be determined
elow 293 K, the temperature set point could be tracked rapidly;

owever, it might lead to higher operating cost. The product
uality in terms of the total volume of fine and seeded crys-
als is shown in Table 2. The results indicated that the optimal
ooling policy with GMC controller gives better final product
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Fig. 2. The reactor temperature (Tsp: dotted; T: solid; Tj: dashdot) and concen-
tration profiles (Cs: dotted; C: solid; Cm: dashdot) under conventional linear
cooling temperature policy integrated with GMC.

Fig. 3. The reactor temperature (Tsp: dotted; T: solid; Tj: dashdot) and concen-
tration profiles (Cs; dotted; C: solid; Cm: dashdot) under off-line optimal cooling
temperature policy integrated with GMC.

Table 2
The final product quality in terms of the total volume of fine and seeded crystals
in the nominal case

Operating
temperature policy

μn
3(tf)

(�m3 g solvent−1)
μs

3(tf)
(�m3 g solvent−1)

Linear cooling
with GMC

1.4015 × 109 1.0090 × 1010

Optimal cooling
with GMC

6.3835 × 108 8.3600 × 109

Table 4
The kinetic model parameters used in the moment model

kb

(s−1 �m−3)
kg

(×108 �m s−1)

Mismatch kinetic parameters (Batch I) 342.0 1.728
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Table 3
Comparison of the final product properties of crystals predicted from the population

ith moments μ0(tf) (no. of crys-
tals g solvent−1)

μ1(tf)
(×104 �

Population model (actual process) 488 6.7478
Moment model 501 6.9283
pdated kinetic parameters (Batch II) 283.6 1.440

uality compared with the conventional linear cooling policy;
he total volume of fine crystals is decreased by 54.4%. Even
hought the total volume of seeded crystals decreases when the
ptimal cooling policy is applied, it still satisfies the require-
ent of the product quality (μs

3 ≥ 8.3301 × 109). The average
roduct qualities under the optimal operation in terms of the
th moments computed from the CSD at final batch time and
hose obtained from the moment model are provided in Table 3.
mall relative differences of the actual and predicted value
ith less than 4% are observed. This confirms that the moment
odel can be reasonably employed to represent crystallization

rocesses.
Next, the performance of the batch-to-batch optimization

cheme with GMC is tested in case of a model-plant mismatch.
he process condition is the same as the earlier simulation
xcept for the kinetic parameters. We assume that the moment
odel contains some errors in the kinetic parameters of the

ucleation and growth rates; 20% increase of kb and kg are intro-
uced. It is found that when implementing the calculated optimal
emperature profile obtained by the solution of the dynamic
ptimization problem with respect to incorrect kinetic param-
ters to the crystallizer (Batch I), the final crystal product is
ff-spec; the average total volume of seeded crystal (μs

3) of
.3172 × 109 is less than its specification. To avoid this problem
or a new batch run (Batch II), a batch-to-batch optimization
pproach is considered. Following this approach, information
f the CSD measured at the final time from the previous run is
sed to update the kinetic parameters, i.e., kb and kg. That is,
he actual ith moments (μi,process) are calculated based on the

easured CSD and compared with the predicted ith moments
μi,model). The dynamic optimization is formulated as described
n Section 3 and solved to find new estimated kb and kg with
n objective to minimize the difference of μi,process and μi,model.
he updated kb and kg is used to modify an optimal cooling
olicy for the new batch run. It can be seen from Table 4 that
he updated kinetic parameters approach the actual values (see
able 1). With these updated values, the optimal temperature

rofile is re-computed and implemented to control the crystal-
izer at the subsequent batch. The results in Table 5 show that
t the final time, the total volume of seeded crystals satisfies

model and moment model

m g solvent−1)
μ2(tf)
(×107 �m2 g solvent−1)

μ3(tf)
(×109 �m3 g solvent−1)

2.0968 8.9984
2.0726 8.6510
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Table 5
Comparison of the total volume of fine and seeded crystal obtained with/without
updating kinetic parameters for next batch operation

μn
3(tf)

(×108 �m3 g solvent−1)
μs

3(tf)
(×109 �m3 g solvent−1)

Mismatch kinetic
parameters
(Batch I)

6.2742 8.3172

Updated kinetic
parameters

6.3789 8.3582

t
m
q
b
c

6

e
t
o
u
r
m
o
c
p
c
s
a
i
s
i
b

A

l
7

R

[

[

[

[13] D. Shi, N.H. El-Farra, M. Li, P. Mhaskar, P.D. Christofides, Predictive
(Batch II)

he requirement while the total volume of fine crystals is mini-
ized. From these results, it is clearly indicated that the product

uality and process efficiency can be improved by using the
atch-to-batch optimization strategy integrated with the GMC
ontrol.

. Conclusion

A batch-to-batch optimization strategy for kinetic parameter
stimation is developed and implemented to a seeded batch crys-
allization of potassium sulfate production in this study. Based
n the knowledge in a crystal size distribution of final prod-
ct, the kinetic parameters involving the nucleation and growth
ate of crystals are updated and then used to determine an opti-
al operating temperature policy for a new batch. The obtained

ptimal temperature policy is controlled by a generic model
ontrol (GMC) algorithm. In the nominal case where all model
arameters are exactly known, the performance of the optimal
ooling policy is better than that of the linear cooling policy as
maller volume of fine crystals is found at the final time of oper-
tion. Under the model-plant mismatch in kinetic parameters, it

s demonstrated that the proposed batch-to-batch optimization
cheme give a good estimate of the kinetic parameters and can
mprove the product quality and process efficiency of the seeded
atch crystallizer.
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