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Abstract

Batch crystallization is one of the widely used processes for separation and purification in many chemical industries. Dynamic optimization
of such a process has recently shown the improvement of final product quality in term of a crystal size distribution (CSD) by determining an
optimal operating policy. However, under the presence of unknown or uncertain model parameters, the desired product quality may not be achieved
when the calculated optimal control profile is implemented. In this study, a batch-to-batch optimization strategy is proposed for the estimation of
uncertain kinetic parameters in the batch crystallization process, choosing the seeded batch crystallizer of potassium sulfate as a case study. The
information of the CSD obtained at the end of batch run is employed in such an optimization-based estimation. The updated kinetic parameters
are used to modify an optimal operating temperature policy of a crystallizer for a subsequent operation. This optimal temperature policy is then
employed as new reference for a temperature controller which is based on a generic model control algorithm to control the crystallizer in a new

batch run.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A crystallization process is one of the major processes for
product separation in fine chemical, food, mineral, petrochemi-
cal, and pharmaceutical industries [ 1]. Considering the operation
of crystallizers, a batch process is preferable as a larger mean
crystal size and narrower crystal size distribution (CSD) can
be achieved. In general, the CSD which is typically character-
ized by the mean and variance of crystal size is a key property
to control this process because it directly affects final product
qualities. Therefore, finding an optimal operating condition and
effective control strategy to obtain the crystals with a desired
CSD is significant in order for improving the performance of
batch crystallization processes and at the same time reducing
difficulties in downstream processing [2].

In the formation of a crystal, a driving potential is the
nonequilibrium state of the system measured by a relative
supersaturation. For case of batch crystallizations, a solution
temperature profile affects the supersaturation profile which has
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a strong effect on the CSD via kinetic phenomena (i.e., growth
and nucleation of crystals), and therefore is often employed to
indirectly control this process [3,4]. In the past years, various
cooling strategies such as linear, natural, and controlled cooling
have been widely investigated. Hojjati and Rohani [5], for exam-
ple, investigated the effect of cooling rate policy on the level of
supersaturation for batch crystallization of ammonium sulfate
production. Four cooling strategies consisting of a natural, lin-
ear, controlled, and impulse change in natural cooling policy
were investigated and the results showed that at low seed load-
ing, the controlled cooling policy is needed in order to ensure
narrow final CSD with large mean size.

Recently, an optimization of batch crystallization processes
has received considerable attention as it is a useful tool to design
an optimal operating temperature which has a direct effect on
the final-time CSD. Many previous studies have been focused on
the computation and solution of such an optimization problem.
Miller and Rawlings [6] proposed an open-loop optimal con-
trol strategy on a bench-scale potassium nitrate—water system.
Implementation of the optimal cooling policy on this system
leads to an increase in the weight mean size of crystal product.
Costa et al. [2] proposed the optimal cooling methodology to
improve product quality in an adipic acid crystallization process.
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Nomenclature

A total heat transfer surface area (m?)

b nucleation rate exponent

B nucleation rate (no. crystals~! g solvent™!)

C solution concentration (g solute g solvent™!)
Cn metastable concentration (g solute g solvent™!)

G, heat capacity of the solution (kJ kg=! K~ 1)
Cyj heat capacity of cooling water (kI kg~! K1)
Cs saturation concentration (g solute g solvent™1)

E activation energy

f population density of crystals (no. of crys-
tals um~! g solvent™!)

Fj cooling water flow rate (m> s~ 1)

g growth rate exponent

G growth rate (ums~!)

AH heat of crystallization (kJkg™!)

kp birth rate coefficient (s~! um™3)

kg growth rate coefficient (m s—h

ky volumetric shape factor

K1, K> GMC tuning parameters

L characteristic crystal length (p.m)

M mass of solvent in the crystallizer (kg)

R gas constant

t time (min)

T reactor temperature (K)

T; cooling jacket temperature (K)

Tjsp set point of the jacket temperature (K)

U overall heat transfer coefficient (kim~2h~1 K1)

v jacket volume (m?)

Greek symbols

I moment of the CSD

Ho zeroth moment of the CSD (no. of crys-
tals g solvent™!)

U1 first moment of the CSD (wm g solvent™!)

7% second moment of the CSD (pm? g solvent™!)

w3 third moment of the CSD (pﬁm3 g solvent™1)

0 density of crystals (g pm™)

0; density of cooling water (kg m™)

Superscripts

n nucleation

S seeded crystal

Hu et al. [7] studied the optimization of batch-seeded crystalliz-
ers. The results show that the optimal cooling profile is able to
reduce the volume of fine crystals. Most of these optimal temper-
ature profiles rely on the accuracy of a crystallization process
model which can be described by either a population balance
model (PBE) or amoment model (the reduced order model of the
PBE) coupled with mass and energy balances. However, from the
view point of modeling, the growth and nucleation kinetics are
the most important uncertain parameters. It was demonstrated

that even such kinetic parameters can be typically determined
by experiments, they are likely to have substantial errors [8].

Due to the presence of uncertain kinetic parameters, the
calculated optimal control profile may not give an optimal per-
formance when applied to real processes. To overcome this
problem, an estimation of kinetic parameters may be required.
According to Hu et al. [3], many research activities have been
focused on the development of various methods such as polyno-
mial fitting and optimization procedure, for the kinetic parameter
estimation in batch crystallization processes. It has been known
that all the state variables cannot be measured. This is espe-
cially for the CSD of which the on-line measurement is difficult
and inaccurate. Thus, the developed techniques to estimate the
parameter of the model should be based on the available and
reliable measurements.

In this study, we propose a batch-to-batch optimization strat-
egy integrated with an on-line nonlinear control methodology
for controlling a crystallizer process, choosing the seeded batch
crystallization of potassium sulfate as a case study. As the batch
process is repetitive in nature, it would be possible to exploit
information of previous batch results to improve the operation of
anew batch. Here, an off-line measurement of a crystal size dis-
tribution which is obtained with reliability and accuracy through
experimental analysis at the end of run is used to update kinetic
parameters by solving a parameter optimization problem. These
updated kinetic parameters are then used to modify the optimal
operating temperature policy for a subsequent operation. Since
the deviation from the desired optimal profile might cause an
off-spec product, an on-line feedback control system should be
considered [7]. However, only a few studies have focused on
this topic; for example, Zhang and Rohani [9] applied a conven-
tional PI control to track the optimal cooling temperature of a
batch crystallizer. As it has been shown from the previous stud-
ies [10,11] that a generic model control (GMC) as a nonlinear
model-based control algorithm is more effective and robust in
tracking the optimal temperature profile than conventional PID
controllers. Thus, in this study a generic model control (GMC) is
integrated to the batch-to-batch optimization approach to control
the crystallizer temperature following the desired profile.

2. Mathematical model of a seeded batch crystallizer

The classical framework for modeling batch crystallization
processes consists of the population balance equation (PBE)
describing a conservation equation for a number of crystals in
a population. Based on the following basic assumptions; vol-
ume change in the system is assumed to be negligible; crystal
agglomeration or breakage phenomena are neglected [12], the
PBE can be mathematically expressed as

of (L, 1) f(L,1)
ot oL

where f(L, t) is the population density of crystals at a character-
istic length, L and time, ¢.

As the nucleation and growth of crystals rely on the liquid
phase properties, the mass balance is used to explain the concen-
tration change of the solute and can be shown in the following

+ G(1) 0 (1)
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equation:

dCc

O = 3k G @)

The energy balances for a batch crystallizer and jacket are as
follows:

AT _ 380 kGow® - 22an-10)0 3
d c, MC,
B B -0+ -2t -1.0) @
eV PiViCpj

The ith moment of the population density is defined in terms
of the population density function by

Wi = / ” F(L, L dL Q)
0

In the formation of a crystal, two steps are occurred: the birth
of a new particle and its growth to macroscopic size. The driving
potential for both rates is the nonequilibrium state of the system
measured by a relative supersaturation (S):

_ C—=C«(T)
Cs(T)

The rates of crystal nucleation (B) and growth (G) can be
expressed in Egs. (7) and (8):

B(t) = kye™ PRI S0 13 (1) (7

G(1) = kge Ee/RT g8 ®

(6)

The control purpose of a crystallization process is to man-
age the nucleation and growth rates to achieve the desired
crystal size. Well-controlled crystallization processes is usually
operated in the metastable zone bounded by the saturation con-
centration and the metastable limit, C; < C < Cyy, in order to
avoid uncontrolled nucleation of crystals.

In this work, the seeded batch crystallizer of potassium sulfate
studied by Shi et al. [13] is considered. The value of the model
parameters are shown in Table 1. The following equations are
used to calculate the saturation and metastable concentrations
corresponding to the solution temperature, 7:

Co(T) = 6.29 x 1072 +2.46 x 107°T — 7.14 x 107977
9

C(T) =7.76 x 1072 +2.46 x 10737 — 8.10 x 107°7?
(10)

The PBE called “a population model” (Eq. (1)) is solved using
a solution methodology proposed by Hu et al. [2,7]. Based on
the concept of the population balance that describes the state of
the CSD, the PBE is transformed by a finite difference method
to a set of algebraic equations. The population densities in the
absence of crystal aggregation and breakage at time #; and
tr =(t] + At) can be related by

fLy, t)ALy = f(La, 11 + ADAL» (11)

Table 1

Model parameters of a seeded batch crystallizer

Parameters Value

b 1.45
kp (s pm3)~! 285.0
Ey/R (K) 7517.0
U I (m>hK)™1) 1800.0
AH (kTkg™1) 44.5
M (kg) 27.0
ky 1.5
V; (m?) 0.015
oj (kgm™3) 1000.0

g 1.5
kg (x10% pms™1) 1.44
Eo/R (K) 4859.0
A (m?) 0.25
Cy KI (kgK)™h) 3.8
Pc (xlO_lzgp.m_3) 2.66
t¢ (min) 30.0
Fj(m¥s™!) 0.001
Gy (KI (kgK)™) 4.184

The definition of growth rate is defined when At is small as

Ly~ L1+ G(Ly, t1)At (12)
and
Ly+ ALy~ L1+ AL1 + G(L1 + AL1, t1)At (13)

Subtracting Eq. (13) by Eq. (12) yields
ALy ~ ALy +(G(Ly + ALy, t1) — G(L1, 1)) At
oG(L, t1)

~ |1
(125

Substituting Eq. (14) into Eq. (11) gives

N f(L1, 1)
flla, i+ AN~ 1+ (G(L, t1)/dL)| =L, At (15

At | AL, (14)
L=L,

Therefore, the PBE are defined as algebraic equations for the
evaluation of CSD with size L, at time #, in terms of the CSD
with size L at time #;.

The initial distribution of the seeded crystals in the batch crys-
tallizer is assumed to be a parabolic distribution as the function
of the crystal characteristic length ranging from 250 to 300 pm
[13]:

f(L,0) =
0.0032(300 — L)(L —250) for 250 pm < L < 300 pm
0 for L <250 pm and L > 300 pm
(16)

In addition, the boundary condition is defined as the ratio of
nucleation and growth rate of crystals with L=0:
f0.1) = 20 (a7)
G
It should be noted that although the population model can be
directly solved, its implementation in an optimization problem is
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very time-consuming. Recently, the development in the method
of moments leads to a reduced order model (called “the moment
model”) in which the key dynamics of the crystallization process
are taken into account [12]. This method allows the model to be
solved quickly and efficiently. As a consequence, in this work the
population model represents the actual crystallization process
whereas the moment model is used in the formulation of an
optimization problem and the design of a nonlinear model-based
control.

Following the moment model approach, the population model
(Eq. (1)) is transformed to a set of ordinary differential equations
(ODEs). The rate equation of moments is derived by determining
separately the moments of the seed and nuclei classes for the
CSD as in Egs. (18) and (19):

dug dui . .
=B, S E=iGono, =123 (18
dus

W{ = constant,

=G, =123 (19)

The overall ith moments are defined as p; = u + uf. It is
noted that since the crystal breakage or agglomeration model
was not considered in the proposed crystallizer model, the total
number of the crystals growing from seeds remains constant
which is determined by the initial seed size distribution.

3. Batch-to-batch optimization approach

As batch processes are repetitive in nature, it would be pos-
sible to use information from the previous batch to improve the
operation of a new batch. Here a batch-to-batch optimization
approach is proposed to estimate kinetic parameters, i.e., ki, and
kg, which are important for the prediction of crystal formation.
The identification relies on the off-line measurement of a crystal
size distribution (CSD) obtained at the end of batch run. Fig. 1
shows the schematic of an integrated batch-to-batch optimiza-
tion with GMC control proposed in this study. As can be seen
from the figure, once the CSD of product at the end of opera-
tion is measured, the ith moment of the population density of the
crystals (i4; process) is calculated using Eq. (5) and compared with
that predicted from a moment model (tt; model)- It is noted here
that the crystallization process is represented by the population
model while the model of crystallizer, which is used within an

C(K), T(k), Tj(k)
o T Tisp(K) ctallizati St
D}IIE]IIIIC ¥ GMC controller 15 . Crystallization
Optimization Process |
Hiprocess(fr)
e o Himodet(Iy) | +
Crystallization | =" -
Model \5
At the end of batch run
Auits)
Batch-to-Batch
Ko K, Optimization

Fig. 1. Control strategy integrated with batch-to-batch optimization for updated
kinetic parameter.

optimization and control framework, is based on the moment
model. New updated value of the constant kinetic parameters
(kv and kg) is determined by solving a dynamic optimization
problem with an objective to minimize such an error (Eq. (20)).
In this study, a sequential optimization method in which the
dynamic optimization is transformed into a nonlinear program-
ming problem is applied to find the new estimate of the kinetic
parameters. With the initial guess of the constant kinetic param-
eters, the crystallizer models consisting of the moment model of
crystallization (Eqs. (18)—(19)) and the mass and energy bal-
ances (Eqgs. (2)—(4)) are integrated using the Matlab odel5s
routine which is based on the backward differentiation for-
mulas (BDFs) and the objective function is then determined.
The nonlinear programming problem is solved by a sequential
quadratic programming (SQP) method using the fmincon rou-
tine in Matlab optimization toolbox in order to compute a new
value of the parameters. The sequence continues until the opti-
mal value of the objective function is found satisfying a specified
accuracy:

3
. 2
i“‘z?E (P (t) — % (1p)) (20)
%0
subject to

e the moment model of crystallization (Eqs. (18)—(19));
e the mass and energy balances (Egs. (2)—(4));
o ky, kg >0

It should be noted here that the measured data of the final-
time CSD from the last batch is only used to update the kinetic
parameters in the proposed method. In the sequence of batch
operations, each batch is operated under different optimal cool-
ing policy. Therefore, if all previous batch data are used to
identify the parameters, a set of models, with different oper-
ating temperature profile, to describe each batch crystallizer
is required to predict the value of the ith moments which is
compared with that obtained from each batch, resulting in a
complicated parameter optimization problem.

3.1. Formulation of a dynamic optimization problem

When the kinetic parameters in the moment model of the
seeded batch crystallizer are updated via the batch-to-batch opti-
mization strategy, they are employed for computing an optimal
operating temperature policy of the crystallizer for a new batch
run. In batch crystallization processes, the fine crystals usually
affect both product quality and process economics. Moreover,
they can also cause difficulties in downstream processing equip-
ment (i.e., filtration, drying). For this reason, the aim of a
dynamic optimization is to determine an optimal temperature
profile minimizing the total volume of fine crystals represented
by the third moment of crystals, ug‘, whereas the total volume of
seeded crystals has to satisfy the product quality requirement.
The dynamic optimization problem can be stated mathematically
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as follows:

inp3 (¢ 21
r}l(ltr)l%( £) (21)
subject to

e the crystallizer model equations: Egs. (2), (18) and (19);
o s <C < Cy, Twin = T =< Tiax,
15 (1) > 8.3301 x 10°

where Tiin and Ty is chosen as 303 and 323 K, respectively.
The final batch time, #¢, is 30 min. The performance constraint
on the total volume of seeded crystals (,u%) is included in the
dynamic optimization problem in order to guarantee that the
requirement of a final product quality is satisfied.

As in the parameter optimization problem, the sequential
optimization approach is also employed to solve the formulated
dynamic optimization problem. Since the cooling temperature
is the function of operating time, the temperature profile as
an optimization variable is approximated by a piecewise con-
stant function. With the initial guess of temperature value in
each interval, the crystallizer model equations (Eq. (2), (18) and
(19)) are solved and then the objective function is evaluated. The
resulting nonlinear programming problem is solved to determine
a new set of the temperature value in each time interval. This
procedure is repeated until the optimal temperature profile is
found.

4. Generic model control algorithm

A generic model control (GMC), one of the nonlinear model-
based control algorithms, is successfully applied to a number of
chemical processes [10,11]. This is because nonlinear process
models can be interpreted straightaway in the GMC control algo-
rithm to generate optimal manipulated inputs, and the controller
parameters can be easily tuned [14].

The general form of GMC algorithm can be given as
dy e
&= KiOw -+ K2 [ g - 22)
where y represents the controlled variables, K| and K, are the
GMC tuning parameters determined by choosing a target profile
of the controlled variable [14].

To implement the GMC, an energy balance around the crys-
tallizer as in Eq. (3) is needed. It provides the relation between a
controlled variable (crystallizer temperature) and a manipulated
variable (jacket temperature). Replacing 7 for y in Eq. (22) and
rearranging to obtain 7; as follows:

McC, ’
T]:T+ Kl(Tsp_T)+K2 (TSP—T)dl
UA 0

AH
+ ( 3pka(I)M2(I)> ) (23)
Cp

It is note here that the concentration and temperature are
assumed to be measured and the second moment () can be
computed from the moment model. The integral term in Eq.

(23) can be approximated by numerical integration. This leads
to the discrete-time form of the GMC algorithm as given in the
following equation:

Ti(k) = Tk MC, K(Ty — T(k
(k) = T(k) + A 1(Tsp — T(k))

d AH
+K2 > (Tp—T (k) A+ <C3pka(k)M2(k)>
P
' (24)

where At is the sampling time.

Since the jacket temperature determined from Eq. (24) is an
actual temperature in the crystallizer which is not a set point or
inlet jacket temperature. In order to compensate the effect of a
dynamic of the jacket control system, a first order model with
time constant, 7; is assumed. The jacket temperature set point
can be computed by

T:(k)—Ti:(k—1
Tjop() = Tik — 1) + 7 (J()A;()) (25)

In this work, water is used as coolant, thus the jacket temper-
ature set point is bounded between 293 and 323 K.

5. Simulation results

In the first case study, the effect of cooling modes, i.e., lin-
ear and optimal cooling policy, on the control performance of
a seeded batch crystallizer in a nominal case where all parame-
ters are known exactly as given in Table 1, is illustrated. Under
the conventional linear cooling policy, the temperature set point
is cooled down linearly from 323 to 303 K. On the other hand,
under the optimal cooling policy, the profile of the tempera-
ture set point is determined by solving a dynamic optimization
problem as mentioned earlier. It is noted that a piecewise con-
stant function using 60 time interval with equal length is used to
approximate the temperature profile. Once the profile of the tem-
perature set point is specified, a GMC controller is implemented
to drive the temperature of the crystallizer following the desired
set point. Based on the guideline given by [14] for setting the
GMC tuning parameters, the values of K| and K> are chosen as
0.013 and 10719, respectively.

Figs. 2 and 3 show the crystallizer temperature and the
solution concentration profiles under the two cooling policies.
Simulation result presents that the solution concentration can
be maintained within the metastable zone keeping away from
uncontrolled nucleation of crystals. Further, it can be seen from
Fig. 3 that at the start of batch run, the optimal temperature set
point of the crystallizer cannot be perfectly tracked since the
lower bound on the jacket temperature of 293 K is fixed; water
is selected as coolant in this case. With the use of other coolants
of which the lower limit of the temperature can be determined
below 293 K, the temperature set point could be tracked rapidly;
however, it might lead to higher operating cost. The product
quality in terms of the total volume of fine and seeded crys-
tals is shown in Table 2. The results indicated that the optimal
cooling policy with GMC controller gives better final product
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Fig. 2. The reactor temperature (7p: dotted; T solid; 7;: dashdot) and concen-
tration profiles (Cs: dotted; C: solid; Cyy: dashdot) under conventional linear
cooling temperature policy integrated with GMC.
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Fig. 3. The reactor temperature (7p: dotted; T solid; 7;: dashdot) and concen-
tration profiles (Cs; dotted; C: solid; Cy,: dashdot) under off-line optimal cooling
temperature policy integrated with GMC.

Table 2
The final product quality in terms of the total volume of fine and seeded crystals
in the nominal case

Table 4
The kinetic model parameters used in the moment model
ky kg
(s~ pm™3) (x10% pms—1)
Mismatch kinetic parameters (Batch I) 342.0 1.728
Updated kinetic parameters (Batch II) 283.6 1.440

quality compared with the conventional linear cooling policy;
the total volume of fine crystals is decreased by 54.4%. Even
thought the total volume of seeded crystals decreases when the
optimal cooling policy is applied, it still satisfies the require-
ment of the product quality (15 > 8.3301 x 10%). The average
product qualities under the optimal operation in terms of the
ith moments computed from the CSD at final batch time and
those obtained from the moment model are provided in Table 3.
Small relative differences of the actual and predicted value
with less than 4% are observed. This confirms that the moment
model can be reasonably employed to represent crystallization
processes.

Next, the performance of the batch-to-batch optimization
scheme with GMC is tested in case of a model-plant mismatch.
The process condition is the same as the earlier simulation
except for the kinetic parameters. We assume that the moment
model contains some errors in the kinetic parameters of the
nucleation and growth rates; 20% increase of ky, and k, are intro-
duced. Itis found that when implementing the calculated optimal
temperature profile obtained by the solution of the dynamic
optimization problem with respect to incorrect kinetic param-
eters to the crystallizer (Batch I), the final crystal product is
off-spec; the average total volume of seeded crystal (u3) of
8.3172 x 10 is less than its specification. To avoid this problem
for a new batch run (Batch II), a batch-to-batch optimization
approach is considered. Following this approach, information
of the CSD measured at the final time from the previous run is
used to update the kinetic parameters, i.e., kp and k. That is,
the actual ith moments (i process) are calculated based on the
measured CSD and compared with the predicted ith moments
(i model)- The dynamic optimization is formulated as described
in Section 3 and solved to find new estimated kp and kg with
an objective to minimize the difference of (; process and fLi model-

gﬁf;:?ﬁre policy ’(“fr(r:g)g solvent-1) éfr(;g)g solvent-1) The updated ky and kg is used to modify an optimal cooling
i policy for the new batch run. It can be seen from Table 4 that
Linear cooling 1.4015 x 10° 1.0090 x 10 the updated kinetic parameters approach the actual values (see
with GMC o 0 Table 1). With these updated values, the optimal temperature
Optimal cooling 6.3835 x 10 8.3600 x 10 . .
with GMC profile is re-computed and implemented to control the crystal-
lizer at the subsequent batch. The results in Table 5 show that
at the final time, the total volume of seeded crystals satisfies
Table 3
Comparison of the final product properties of crystals predicted from the population model and moment model
ith moments Ho(ft) (no. of crys- wa(te) Ha(tr) w3(te)
tals g solvent™!) (x10* wm g solvent~1) (x107 wm? g solvent~1) (x10° wm? gsolvent™1)
Population model (actual process) 488 6.7478 2.0968 8.9984
Moment model 501 6.9283 2.0726 8.6510
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Table 5
Comparison of the total volume of fine and seeded crystal obtained with/without
updating kinetic parameters for next batch operation

u3(tp) )
(x108 me3 g solvent™!) (x10° pum3 gsolvent™!)
Mismatch kinetic 6.2742 8.3172
parameters
(Batch I)
Updated kinetic 6.3789 8.3582
parameters
(Batch II)

the requirement while the total volume of fine crystals is mini-
mized. From these results, it is clearly indicated that the product
quality and process efficiency can be improved by using the
batch-to-batch optimization strategy integrated with the GMC
control.

6. Conclusion

A batch-to-batch optimization strategy for kinetic parameter
estimation is developed and implemented to a seeded batch crys-
tallization of potassium sulfate production in this study. Based
on the knowledge in a crystal size distribution of final prod-
uct, the kinetic parameters involving the nucleation and growth
rate of crystals are updated and then used to determine an opti-
mal operating temperature policy for a new batch. The obtained
optimal temperature policy is controlled by a generic model
control (GMC) algorithm. In the nominal case where all model
parameters are exactly known, the performance of the optimal
cooling policy is better than that of the linear cooling policy as
smaller volume of fine crystals is found at the final time of oper-
ation. Under the model-plant mismatch in kinetic parameters, it
is demonstrated that the proposed batch-to-batch optimization
scheme give a good estimate of the kinetic parameters and can
improve the product quality and process efficiency of the seeded
batch crystallizer.
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